• Format: ms-word (doc)
  • Pages: 65
  • Chapter 1 to 5
  • With abstract reference and questionnaire
  • Preview abstract and chapter 1 below

 5,000

CHAPTER ONE

INTRODUCTION

3.0            Background of Study

Corrosion is an irreversible interfacial reaction of a material (metal, ceramic, and polymer) with its environment which results in consumption of the material or in dissolution into the material of a component of the environment. Corrosion could also be defined as the degradation of materials’ properties due to interactions with their environments, and corrosion of most metals (and many materials for that matter) is inevitable of the 105 known chemical elements, approximately eighty are metals , and about half of these can be alloyed with other metals, giving rise to more than 40,000 different alloys. Each of the alloys will have different physical, chemical, and mechanical properties, but all of them can corrode to some extent, and in different ways [1].Corrosion eventually causes failure of components and   systems both in the processing andmanufacturing industries and in the service life of many components. Corrosion control of metals and alloys is an expensive process and industries spend huge amounts to control this problem.We have all seen corrosion and know that the process produces a new and less desirable material from the original metal and can result in a loss of function of the component or system. The corrosion product we see most commonly is the rust which forms on the surface of steel.[2]

Figure 1: STEEL RUST

Corrosion is a natural phenomenon. When newly made steel is first exposed to the air, its originally shiny surface will be covered with rust in a few hours. The tendency of metals to corrode is related to the low stability of the metallic state. Metals occur either in the pure metallic state, the zero oxidation state, or in the form of compounds with other elements (they acquire positive states of oxidation. The chemical reactions that take place in corrosion processes are reduction-oxidation (redox) reactions. Such reactions require a species of material that is oxidized (the metal), and another that is reduced (the oxidizing agent). Thus the complete reaction can be divided into two partial reactions: one, oxidation; the other, reduction. In oxidation, the metal loses electrons. The zone in which this happens is known as the anode. In the reduction reaction, the oxidizing agent gains the electrons that have been shed by the metal, and the zone in which this happens is the cathode.[3-5]

Corrosion processes not only influence the chemical properties of a metal but also generate changes in its physical properties and its mechanical behavior. This is why the effects of corrosion are manifested in a variety of forms. The most common form is uniform corrosion, whereby there is a generalized, overall “attack” of the entire exposed surface of the metal, leading to a more or less uniform reduction in the thickness of the affected metal.

Corrosion processes affect many areas of human activity in which metal products are used. In general, as levels of economic development increase, so do costs incurred as a result of corrosion. It is estimated that the costs attributable to the corrosion of metallic materials amount to 4 percent of the gross domestic product of the developed countries. And this cost, representing a loss of resources, would be even higher if methods of protection against corrosion were not so widely applied. It is estimated that because of this protection, populations are able to reduce these potential losses by a factor of about 30 percent.

1.4 Scope of Study

Though the outcome of the project can be applied in nearly all sectors, in the oil and gas industry which have corrosion problem, the scope of this project as have been limited to Corrosion/Corrosion Inhibitors. Thus, corrosion detection and control or reduction techniques have been discussed in detail. Also, within the scope of the project is the overview of the different types of corrosion and corrosion inhibition and the terrain they occur.

1.5 Significance and Benefits of the Study

Corrosion failures can result to personal injuries, fatalities and cost billions of dollars, through spontaneous shutdown and environmental contamination. Hence, the critical need for better methods to monitor the actual deterioration of a component once it is placed in service in a corrosive environment, analyse that information, and, based on decision-making reasoning, provide a reasonable forecast of the time remaining before maintenance or replacement becomes necessary.  Through corrosion inspection and monitoring, the condition of the metals works can always be ascertained and proper corrosion control and maintenance strategies put in place.

Many catastrophic incidences resulting from corrosion failure had been historically recorded.

Corrosion costs the oil and gas industry tens of billions of dollars in lost income and treatment costs every year. The total annual cost of corrosion in the oil and gas production industry is estimated to be $1.372 billion, broken down into $589 million in surface pipeline and facility costs, $320 million in capital expenditures related to corrosion. Corrosion costs US industries alone an estimated $170 billion a year in which the oil and gas industry takes more than half of these costs

1.6 Factors That Influence Corrosion

The nature and extent of corrosion depend on the metal and the environment. The important factors which may influence the corrosion process are:

1.6.1   Primary factors related to metal:

1. Nature of the metal:

The tendency of a metal to undergo corrosion is dependent on the nature of the metal. Metals with lower reduction potential undergo corrosion easily whereas metals with higher reduction potential do not undergo corrosion easily. The reactive metals like Na, K, Mg, Zn are more susceptible for corrosion. The noble metals like Ag, Au, Pt, Pd are less susceptible for corrosion.

2. Surface state of the metal:

Corrosion is surface phenomenon, larger the surface area or finer the grain size of the metal, more will be the corrosion. Smooth surface resist corrosion than the rough surface. Due to ups and downs on the rough surface, there will be formation of large number of air concentration cells with anodic and cathodic regions. Hence the metal suffers corrosion.

3. Nature of the corrosion product:

It largely decides the rate of corrosion. If the corrosion product is insoluble, stable, uniform and nonporous, it acts as a protective film preventing the further corrosion. If the corrosion product formed is soluble, unstable, porous and non-uniform, the corrosion continues.

4. Hydrogen over voltage:

If the hydrogen over voltage of metal is low, it is more susceptible for corrosion. When the cathodic reaction is of hydrogen evolution type with lower hydrogen over voltage, hydrogen gas is evolved easily and thus cathodic reaction is faster and corrosion of metal becomes fast. In metals with higher hydrogen over voltage, cathodic reaction is slow and corrosion of metal becomes slow.

GET THE COMPLETE PROJECT»

Do you need help? Talk to us right now: (+234) 08060082010, 08107932631 (Call/WhatsApp). Email: [email protected].

IF YOU CAN'T FIND YOUR TOPIC, CLICK HERE TO HIRE A WRITER»

Disclaimer: This PDF Material Content is Developed by the copyright owner to Serve as a RESEARCH GUIDE for Students to Conduct Academic Research.

You are allowed to use the original PDF Research Material Guide you will receive in the following ways:

1. As a source for additional understanding of the project topic.

2. As a source for ideas for you own academic research work (if properly referenced).

3. For PROPER paraphrasing ( see your school definition of plagiarism and acceptable paraphrase).

4. Direct citing ( if referenced properly).

Thank you so much for your respect for the authors copyright.

Do you need help? Talk to us right now: (+234) 08060082010, 08107932631 (Call/WhatsApp). Email: [email protected].

//
Welcome! My name is Damaris I am online and ready to help you via WhatsApp chat. Let me know if you need my assistance.